Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Matthias Weil

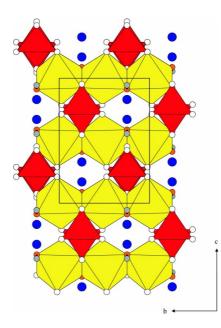
Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria

Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Key indicators

Single-crystal X-ray study T = 295 KMean σ (Zn–O) = 0.003 Å R factor = 0.018 wR factor = 0.041 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


ZnHg(AsO₄)(OH) with a descloizite-type structure

Single crystals of zinc mercury(II) arsenate(V) hydroxide, ZnHg(AsO₄)(OH), were obtained under hydrothermal conditions and structurally characterized using X-ray diffraction. ZnHg(AsO₄)(OH) crystallizes isotypically with the mineral descloizite, ZnPb(VO₄)(OH). The structure is composed of linear chains of edge-sharing [Zn(OH)₂O₄] octahedra which are linked by vertices of AsO₄ tetrahedra to form an open framework structure. In the channels of this arrangement, Hg atoms are situated, having two short bonds to one O atom of the AsO₄ group and to the OH group. Additional stabilization of the structure is accomplished by weak hydrogen bonding. Received 9 January 2004 Accepted 20 January 2004 Online 30 January 2004

Comment

Crystals of the title compound were obtained during a recent project on phase formation experiments in the systems Hg-M-X-O-H [M = Zn, Cd; X = S, Se (Weil, 2004), and X = As].

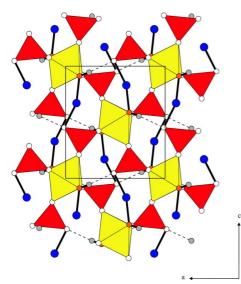

The present study revealed that the synthetic compound $\text{ZnHg}(\text{AsO}_4)(\text{OH})$ crystallizes isotypically with the mineral descloizite, $\text{ZnPb}(\text{VO}_4)(\text{OH})$ (Hawthorne & Faggiani, 1979), and other lead oxysalt minerals of the descloizite family with the general formula $MPb(XO_4)(\text{OH})$, where $M = \text{Cu}^{\text{II}}$, Fe^{II} , Mn^{II} or Zn^{II} , and $X = \text{As}^{\text{V}}$ or V^{V} . This is remarkable since mercury oxo compounds usually show a quite unique crystal chemistry. However, the common preference for a [2 + x] or [x + 2] coordination (*x* can range from 2 to 6) for the Hg^{II}

Figure 1

Projection of the title structure along [100]. $[Zn(OH)_2O_4]$ octahedra are yellow, AsO₄ tetrahedra are red, Hg atoms are blue, O atoms (except for the OH group, which is orange) are white and H atoms are grey.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

Projection of the structure along [010], including the two short Hg-O bonds and hydrogen bonding (dashed lines). Colour key as in Fig. 1.

atom with a more or less linear O-Hg-O angle is also realised in the title compound.

The structure is composed of edge-sharing $[Zn(OH)_2O_4]$ octahedra, building infinite chains parallel to [010], and AsO₄ tetrahedra which link the chains via common vertices to form an open framework structure (Fig. 1). The corresponding coordination figures are slightly distorted and show $\overline{1}$ symmetry and .m. symmetry, respectively. The average distances of $\overline{d}(Zn-O) = 2.093$ Å and $\overline{d}(As-O) = 1.693$ Å are both in the typical range for [ZnO₆] and AsO₄ groups. The Hg atoms are situated in the channels of this framework and are bonded to the OH group and an O atom of the AsO₄ group at short distances $[\overline{d}(Hg-O)_{short} = 2.109 \text{ Å}]$ (Fig. 2). The [2+5]coordination figure is augmented by additional O atoms at considerably longer distances, $2.64 < \overline{d}(Hg-O)_{long} < 2.74$ Å. The H atom is bonded to O4 and exhibits a weak hydrogenbonding interaction to O2, with an HO4···O2 distance of 2.90 Å. Fig. 3 shows a part of the structure represented by anisotropic displacement ellipsoids.

Results from the bond-valence sum calculations (v.u.), taking into account that the contributions from hydrogen bonds are neglected and using the parameters of Brese & O'Keeffe (1991), are in agreement with the expected values for the cations and reflect the weak hydrogen bonding between O4 and O2: Zn 2.11, Hg 1.97, As 4.89, O1 1.89, O2 1.84, O3 1.97, O4 1.50.

Experimental

Stoichiometric amounts of $Zn(NO_3) \cdot 4H_2O$ (Merck, p.A.), $Hg(NO_3)_2 \cdot H_2O$ (Fluka, >99%) and Na_2HAsO_4 (Merck, p.A.) were charged in a Teflon inlay with 10 ml capacity which was two-thirds filled with demineralized water and then sealed in a steel autoclave. This device was heated up to 493 K, kept at that temperature for 5 d and cooled down to room temperature within 1 d. After filtering off the remaining solution, a few colourless crystals of the title compound

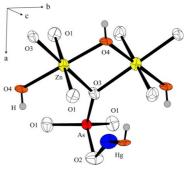


Figure 3 Part of the structure, with anisotropic displacement ellipsoids drawn at the 90% probability level. H atoms are represented as small grey spheres of arbitrary radii.

were obtained. The main product consisted of graphtonite-type $Hg_3(AsO_4)_2$ crystals (Larsson *et al.*, 1993).

Mo Ka radiation

reflections

 $\mu = 50.43 \text{ mm}^{-1}$

T = 295 (2) K

 $\theta = 3.5 - 30.3^{\circ}$

Cell parameters from 2675

Parallelepiped, colourless

 $0.08 \times 0.08 \times 0.05 \text{ mm}$

Crystal data

HgZn(AsO₄)(OH) $M_r = 421.89$ Orthorhombic, *Pnma* a = 7.6826 (7) Å b = 6.2459 (6) Å c = 8.6691 (8) Å V = 415.98 (7) Å³ Z = 4 $D_x = 6.736$ Mg m⁻³ *Data collection*

```
Siemens SMART diffractometer677 independent reflections\omega scans617 reflections with I > 2\sigma(I)Absorption correction: numerical<br/>(HABITUS; Herrendorf,<br/>1993–1997)R_{int} = 0.047\sigma_{max} = 30.5^{\circ}h = -10 \rightarrow 10T_{min} = 0.088, T_{max} = 0.209k = -8 \rightarrow 84303 measured reflectionsl = -12 \rightarrow 11
```

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.019P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.018$	+ 0.725P]
$wR(F^2) = 0.041$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} < 0.001$
677 reflections	$\Delta \rho_{\rm max} = 1.80 \ {\rm e} \ {\rm \AA}^{-3}$
50 parameters	$\Delta \rho_{\rm min} = -1.13 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and restrained	Extinction coefficient: 0.0111 (5)
refinement	

Table 1

Selected geometric parameters (Å, °).

Hg-O4	2.108 (4)	As-O3	1.694 (4)
Hg-O2 ⁱ	2.109 (5)	As-O2 ^{viii}	1.713 (4)
Hg-O1 ⁱⁱ	2.638 (3)	Zn-O4 ^{ix}	2.039 (2)
Hg-O1 ⁱⁱⁱ	2.638 (3)	Zn-O4 ^x	2.039 (2)
Hg-O1 ^{iv}	2.736 (3)	Zn-O1 ^{ix}	2.105 (3)
Hg-O1 ^v	2.736 (3)	Zn-O1 ^x	2.105 (3)
Hg-O3 ^{vi}	2.740 (4)	Zn-O3	2.133 (3)
As-O1 ^{vii}	1.682 (3)	Zn-O3 ^{xi}	2.133 (3)
As-O1	1.682 (3)		
O4-Hg-O2 ⁱ	159.35 (16)	O1 ^{vii} -As-O2 ^{viii}	109.34 (13)
O1 ^{vii} -As-O1	113.7 (2)	O1-As-O2 ^{viii}	109.34 (13)
O1 ^{vii} -As-O3	110.33 (12)	O3-As-O2 ^{viii}	103.2 (2)
O1-As-O3	110.33 (12)		

Symmetry codes: (i) $\frac{1}{2} + x, y, \frac{3}{2} - z$; (ii) $\frac{1}{2} - x, -y, \frac{1}{2} + z$; (iii) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} + z$; (iv) $1 - x, \frac{1}{2} + y, 1 - z$; (v) 1 - x, -y, 1 - z; (vi) x, y, 1 + z; (vii) $x, \frac{1}{2} - y, z$; (viii) $\frac{1}{2} + x, y, \frac{1}{2} - z$; (ix) $x - \frac{1}{2}, y, \frac{1}{2} - z$; (v) $\frac{1}{2} - x, -y, z - \frac{1}{2}$; (vi) -x, -y, -z.

Table 2Hydrogen-bonding geometry (Å, °).

$\overline{D - \mathbf{H} \cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O4−H···O2	0.80 (5)	2.12 (5)	2.910 (6)	175 (10)

The H atom was found by difference Fourier analysis. Its position was refined with a restrained D-H distance of 0.80 (5) Å. The $U_{\rm iso}$ value of the H atom was refine freely. The highest peak is located at a distance of 0.72 Å from Hg, and the deepest hole at a distance of 1.02 Å from O4. After the last refinement cycle, the structural data were standardized using the program *STRUCTURE-TIDY* (Gelato & Parthé, 1987).

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine

structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ATOMS for Windows* (Dowty, 2000); software used to prepare material for publication: *SHELXL*97.

References

- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Dowty, E. (2000). ATOMS for Windows. Version 5.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-145.
- Hawthorne, F. C. & Faggiani, R. (1979). Acta Cryst. B35, 717-720.
- Herrendorf, W. (1993–1997). HABITUS. Universities of Karlsruhe and Gießen, Germany.
- Larsson, A. K., Lidin, S., Stålhandske, C. & Albertsson, J. (1993). *Acta Cryst.* C49, 784–786.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany.
- Weil, M. (2004). Z. Anorg. Allg. Chem. In the press.